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Rydberg series of BaF: perturbation-facilitated
studies of core-non-penetrating states

B y Zygmunt J. Jakubek† and Robert W. Field

Department of Chemistry, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Core-non-penetrating molecular Rydberg states sample the electronic structure of
the ion core in a uniquely simple way. However, radial overlap and orbital angular
momentum propensity rules (∆` = ±1) can severely restrict spectroscopic access to
` > 3 non-penetrating states, even via two-colour two-step excitation schemes. Owing
to the profoundly different `-uncoupling behaviour of moderate-n∗ (n∗ ≈ 6–15) core-
penetrating versus non-penetrating states, numerous and systematically repeated
perturbations of the Hund’s case (b) core-penetrating states (accidentally located
near integer n∗) by the case (d) non-penetrating states (always located near integer
n∗) can provide a valuable window into these information-rich, yet difficult to observe,
core-non-penetrating states. We report analysis of core-penetrating (` 6 3)–core-non-
penetrating (` > 3) perturbations in the fluorescence detected optical–optical double
resonance spectrum of BaF. One of the perturbers of the 0.86 2Φ series is assigned
as the lowest energy component, L = +5, of an h complex (` = 5). Other core-non-
penetrating perturbers are assigned as components of g and h complexes. A critical
aspect of the assignments of these quite weak and fragmentary interactions between
one core-penetrating ‘bright’ state and many core-non-penetrating ‘dark’ states is
the systematic (n∗ scaling of both matrix element and N values of the level crossing)
repetition of each family of perturbations in each successive n∗ complex.

1. Introduction

A Rydberg electron can be a sensitive probe of the electronic structure of the ion
core. This ion-core structure is sampled in quite different ways by core-penetrating
(` 6 3)–core-non-penetrating (` > 3) Rydberg series.

The strongest electron↔ion-core interactions occur when the electron is inside
the ion core. Information about intra-core energy and angular momentum exchange
is encoded in the n∗-invariant shape (apart from the well-known n∗−3/2 amplitude
scaling) of the inner lobes of each core-penetrating series (Mulliken 1964) (n∗ is the
effective principal quantum number). Therefore, the primary goal of spectroscopic
study or quantum chemical calculations on core-penetrating Rydberg states should be
characterization of the shapes of these inner lobes . These n∗-descaled inner lobes can
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be represented by

ψ′`′λ ∼
∑
`

a`Y`λ(θ, φ)R`(r),

where the partial-` characters, a`, and the shape of each `-dependent radial factor are
somehow to be determined by experiment or calculation. Perhaps the most sensitive
experimental probe of these partial-` characters and radial shapes for the common
intra-core lobe of all members of each core-penetrating Rydberg series is obtained
from the low-n∗ deviations of molecular constants from their asymptotic values as
the series is followed to its lowest-n∗ valence terminus state (Berg et al. 1993). (The
‘asymptotic’ values are most easily obtained in the n∗ ≈ 5–10 region, before the
higher-n∗ onset of profound `-uncoupling effects at low N , due to off-diagonal BN ·
l matrix elements, which require a laborious supercomplex deperturbation fitting
procedure.)

The compact nature (r . 1 Å) of these information-rich inner lobes makes them
an ideal target for quantum chemical calculations. The usual disclaimer, that quan-
tum chemical calculations are ill suited for the diffuse orbitals, which are an essential
feature of all Rydberg states, does not apply! A great opportunity for insight and
quantitative predictions exists if the results of high level wavefunction calculations
on the inner lobes of low-n∗ core-penetrating Rydberg states could be embedded
into an n∗-scaled multichannel model. It is also possible to obtain a satisfactory
atomic-ion in-molecule semi-empirical description of the intra-core e−–ion interac-
tion from a ligand field (Rice et al. 1985) or a multiple scattering model (Harris &
Jungen 1993). Since this paper will focus on core-non-penetrating states, the preced-
ing provocative remarks about the most intensely studied class of Rydberg states,
the core-penetrating series, will have to suffice.

Although the electron↔ion-core interactions for core-non-penetrating Rydberg se-
ries are much weaker than those for core-penetrating series (Jungen & Miescher 1969;
Eyler & Pipkin 1986; Watson 1994), it can be argued that they are considerably more
important in describing the exchange of energy and angular momentum between the
electron and ion core. Their importance arises from their vastly greater abundance
(there are, respectively, only six s∼p∼d and ten s∼p∼d∼f, core-penetrating 2Λ series
in CaF (Murphy et al. 1990) and BaF (Jakubek & Field 1994), whereas the number
of non-penetrating 2Λ series, (n+1)( 1

2n)−6 or 10, increases rapidly with n). Since, in
non-penetrating states, the Rydberg electron does not penetrate inside the ion core,
the small shifts of non-penetrating series from integer values of n∗ sample the multi-
pole moments and polarizabilities (and the internuclear distance dependence of these
quantities) of the ion core (Jungen & Miescher 1969; Eyler & Pipkin 1986; Watson
1994; Sturrus et al. 1988; Dill & Jungen 1980; Ross 1991). Although core-penetrating
Rydberg series also sample these long-range multipolar properties, the spectroscopic
structure of core-penetrating series is dominated by short-range intra-core interac-
tions. Ideally, the multipole quantities should be determined first from an analysis of
non-penetrating series (or from high level quantum chemical calculations of the ion-
core multipole moments) before a definitive analysis of the core-penetrating series is
undertaken.

Despite their importance, and the fact that they exist for all molecules, core-
non-penetrating Rydberg series have received very little experimental (Herzberg &
Jungen 1982; Dressler et al. 1981; Fujii & Morita 1995) or theoretical attention.
One reason for this neglect is that core-non-penetrating Rydberg series are often
extremely difficult to observe and even more difficult to interpret. In this paper we
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Table 1.

` 2` moment (AU)

1 dipole −4.41
2 quadrupole −11.48
3 octupole −41.45
4 hexadecapole −142.35

will illustrate both the difficulties of observation and assignment as well as a new,
n∗-scaling based, method for uncovering a few diagnostically important members of
these ubiquitous but shy non-penetrating series.

A long-range model for non-penetrating molecular Rydberg series was first pro-
posed by Jungen & Miescher (1969). They were able to describe the 4f and 5f com-
plexes of NO to experimental precision using only four adjustable parameters: (i) the
ion-core quadrupole moment; (ii) an isotropic and (iii) an anisotropic polarizability;
and (iv) the NO+ rotational constant, B+. The long-range multipolar core model
(Jungen & Miescher 1969; Eyler & Pipkin 1986; Watson 1994) has been applied to
several other molecules (CO (Komatsu et al. 1995), H2 (Eyler & Pipkin 1986; Stur-
rus et al. 1988; Herzberg & Jungen 1982), N2 (Huber et al. 1994; McCormack et al.
1990), NO (Dressler et al. 1981; Fujii & Morita 1995) etc.).

Our studies of the Rydberg states of the alkaline earth monohalides (CaF (Berg et
al. 1993; Murphy et al. 1990, 1995; Harris & Field 1993; Gittins et al. 1993; Jakubek
et al. 1994), CaCl (Li et al. 1998) and BaF (Jakubek & Field 1994, 1996, 1998;
Jakubek et al. 1994)) introduce new challenges. These molecules are extremely polar
and relatively heavy (B+ < 0.35 cm−1). Not only are the even multipole moments of
the molecular ion core considerably larger than those of all previously well studied
(near homonuclear) molecules, but the odd multipole moments are enormous. The
magnitudes of the multipole moments are so large that all perturbation theoretic
relationships (Jungen & Miescher 1969; Eyler & Pipkin 1986; Watson 1994) between
the multipole moments and the observable `, λ splittings and ∆` 6= 0, ∆λ = 0
interactions are invalidated (Watson 1994). The BaF+ multipole moments, naively
estimated using a Ba2+, F− two point charge model (ignoring both atomic-ion polar-
izabilities and orbital overlap effects) are listed in table 1 (calculated as Z+r

`
++Z−r`−,

where Z+ = +2 and Z− = −1, r+ is the (negative) distance of M2+ from the cen-
tre of mass and r− is the (positive) distance of X− from the centre of mass, with
the coordinate origin at the centre of mass, R+

e = 3.93 AU). The actual values of
the multipole moments will be slightly smaller, owing primarily to the dipole on F−
induced by Ba2+ (Field & Gittins 1997).

2. Experiment

Our experiments on the Rydberg states of BaF have been described previously
(Jakubek & Field 1994, 1996, 1998). A brief description is presented subsequently.
Most of the results discussed in this paper are obtained in a fluorescence-detected
optical–optical double resonance (OODR) experiment in which the v = 0 C2Π3/2
state was used as the intermediate level. However, some results from mass-selected,
ion-detected, OODR experiments, again using the v = 0 C2Π3/2 state as the inter-
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mediate level, are also discussed below. Details of the ion-detected experiments will
be presented elsewhere (Ma et al., unpublished work).

Barium monofluoride molecules are produced in a high temperature oven by re-
sistive heating of BaF2 powder with a small amount of boron powder. The BaF2
and B are contained in a graphite crucible which is supported in, and heated by,
a tungsten basket. A single load of BaF2 (ca. 30 g) is sufficient for about 6–8 h of
operation. The oven is slowly (ca. 30–40 min) heated and, during normal operation,
the power input to the tungsten basket heater does not exceed 255 W (4.4 V, 58 A,
60 Hz AC). The maximum power is applied only when the highest-n∗ (n∗ ≈ 13–14)
states are studied. Flowing argon, at a pressure of about 200 mTorr, carries BaF
molecules out of the oven region and into the excitation region. The BaF molecules
are cooled rotationally and vibrationally to approximately 500 K.

The PUMP laser (Spectra Physics, PDL-1) selectively populates an individual ro-
tational level of the v = 0 C2Π3/2 state. As the PROBE laser (Lambda Physik,
FL3002E) is scanned, an OODR spectrum is recorded by detecting both direct
and cascade fluorescence from Rydberg states down to the X2Σ+ ground state.
Both dye lasers are pumped by the second or third harmonic of the same Nd:YAG
laser (Quanta Ray, DCR-2A, 10 Hz) and usually operated with intra-cavity etalons
(PUMP laser bandwidth less than 0.05 cm−1, PROBE laser bandwidth less than
0.03 cm−1). The laser pulse energy is kept low enough to avoid power broadening
the spectra. For the highest (n∗ ≈ 14) observed Rydberg states, the PROBE laser
energy does not exceed 500 µJ pulse−1 and is much lower for low- and intermediate-
n∗ Rydberg states. Both PUMP and PROBE laser beams are expanded and their
effective diameter in the excitation region is limited to 2.5 cm by the input window.

Fluorescence from the intermediate state is detected by a photomultiplier tube
(Hamamatsu, R928) equipped with a narrow band (5 nm) interference filter cen-
tred at 500 nm. UV fluorescence from Rydberg states is detected by a solar blind
photomultiplier tube, PMT (Hamamatsu, R166) through a solar blind broadband
interference filter (Oriel), centred at 290 nm (65% peak transmission). The signal
from the PMT is gated and integrated by a dual channel boxcar (Stanford Research
Systems, SR250) and recorded by a computer. The opening of the gate coincides
with the arrival of the PROBE laser pulse (no delay) and typical gate widths are
100–500 ns. Simultaneously with the Rydberg spectrum, an I2 fluorescence excitation
spectrum is recorded, using a portion of the PROBE beam, for absolute frequency
calibration (0.01–0.02 cm−1) (Gerstenkorn & Luc 1979). The signal and reference
channels are usually averaged over 5–10 laser shots per point. Low resolution scans
are carried out with a step size of ∆λ = 0.002 nm (0.06 cm−1). In high resolution
scans, various step sizes in the range of ∆ν = 0.008–0.012 cm−1 are used.

3. Observations of core-non-penetrating Rydberg states

(a ) Intermediate state C 2Π
The C 2Π state, T0 ≈ 20 086 cm−1, is conveniently located approximately halfway

between the X 2Σ+ ground state and the ionization limit, IP = 38 745 cm−1. It
is therefore used as an intermediate level not only in the OODR scans presented
here, but also in other double-resonance experiments on the Rydberg states of BaF.
The PUMP electronic transition, C 2Π3/2–X 2Σ+ (Effantin et al. 1990), is extremely
congested due to the similarity of rotational and vibrational constants in the upper
and lower electronic states as well as a very rich isotope structure (five isotopic
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species of Ba are observable). Therefore, by pumping in the C3/2–X(0, 0) band, we
are only able to access J = 6.5 (via the R2f (5.5) line) as the lowest rotational level
of f symmetry and J = 14.5 (via the SR21ef (13.5) line) as the lowest rotational level
of e symmetry. Lower J lines are obscured by very congested bandheads. This poses
severe problems of assignment. In order to conclusively assign our double resonance
spectra, it is necessary to record spectra for several consecutive J levels, in some cases
spectra for every J up to J = 20.5 for both e and f symmetries! Ultimately, however,
this inconvenient necessity becomes an invaluable advantage, because it allows us to
pick out multiple low J core-penetrating and core-non-penetrating perturbations
and in this way, assemble a large and relatively comprehensive data set for core-
non-penetrating Rydberg states. These observations of the non-penetrating states
are the most exciting, although serendipitous, results of our series of experiments on
the BaF Rydberg states.

(b ) Core-penetrating–core-non-penetrating perturbations
The electronic structure of the BaF molecule possesses an interesting feature: six

of the ten series of core-penetrating 2Λ states are clustered near integer n∗. We
know a priori that all core-non-penetrating states must be even more strongly clus-
tered near integer n∗. The `-uncoupling effects (due to matrix elements of Bl ·N
off diagonal in Λ (Lefebvre-Brion & Field 1986)) for the core-non-penetrating states
are expected to be much stronger than for the core-penetrating states because of
the small energy separations (relative to the ∆` = 0, ∆Λ 6= 0 off-diagonal ma-
trix elements of B+l±N∓) between the rotationless Λ states in the non-penetrating
complexes. This ` uncoupling causes the effective rotational constants for the top
and bottom energy components of each non-penetrating n` complex to be respec-
tively much larger and smaller than B+. In contrast, the effective rotational con-
stants for the core-penetrating states are much less affected by ` uncoupling (smaller
matrix elements, larger energy differences) and are clustered near B+. Such a sit-
uation inevitably leads to multiple avoided crossings between core-non-penetrating
and core-penetrating states. Near each avoided crossing (a few J values), the core-
non-penetrating states borrow some core-penetrating character, and this makes their
excitation via the C2Π state and detection via cascade fluorescence possible.

We observe multiple core-penetrating–core-non-penetrating perturbations. The
easiest to detect are the strong perturbations in the 0.86 2Φ and 0.94 2∆ series.
More difficult to identify is a series of very weak perturbations in the 0.88 2Σ+ se-
ries. We also observe an extra state (manifest as complete rotational term curve) in
the region just above integer n∗. Conclusive assignments of the core-non-penetrating
perturbers in the n∗ slightly larger than integer region are not yet possible and more
experiments are required.

The systematic perturbations in the 0.94 2∆ series are observed for the 8.94 2∆
state and higher series members. In figures 1 and 2, three perturbations are evident
in the 10.94 2∆ state, two of them, one strong and one very weak, in the 10.94
2∆+ (open triangles) component and one (weak) in the 10.94 2∆− component (solid
circles). For the 10.86 2Φ state we observe one strong perturbation and the onset
of another at high N in the 10.86 2Φ+ component (open triangles) and one or two
very weak perturbations in the 10.86 2Φ− component (solid circles). As we go to
higher n∗ members of the 2Φ series (figure 3), additional perturbations are observed
at high N . The perturbation in the 0.88 2Σ+ series is very weak and not very well
documented. In the 10.88 2Σ+ state (figures 1 and 2) only six extra lines are detected
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∆

Σ

Φ

N N

E
×N

N

Figure 1. Plot of reduced term values versus N(N + 1) for the v+ = 0 10.86 2Φ, 10.88 2Σ+ and
10.94 2∆ states, showing multiple perturbations by core-non-penetrating states. Open triangles
(solid circles) denote levels of +(−) Kronig symmetry. Note how, on this ‘N plot’, the spin split-
ting of the core-penetrating states almost disappears. This illustrates that N , not J , is the pat-
tern-forming quantum number for case (b) states. All of the spin-doubled core-penetrating states
appear to be perturbed from above by a non-spin-doubled component of a core-non-penetrating
state.

and the largest level shift is approximately 0.1 cm−1. Figure 1 is a plot of reduced
term value versus N(N + 1). To better illustrate the core-penetrating–core-non-
penetrating perturbations, we also present in figure 2 the reduced term value plot
versus J(J + 1) for e-symmetry levels. Recall that J , unlike N , is a rigorously good
quantum number. Also the total Hamiltonian is strictly block diagonal for e- versus
f -symmetry levels.

Figures 1 and 2 also illustrate an important point about the rotational and fine
structure of core-penetrating states. When the reduced term values of an isolated
case (b) state are plotted versus N(N + 1) as in figure 1, the two spin components of
a Λ 6= 0 2Λ state fall nearly on top of each other. The remaining (small) separation
between same-N , same-parity J = N + 1

2 states is primarily a pseudo spin-rotation
splitting, which is due to the approximately n∗-invariant effects of ∆Λ 6= 0 spin–orbit
interactions (second-order Hspin−orbit × Hrotation). When plotted versus J(J + 1)
as in figure 2, this spin splitting appears much larger and much more strongly J
dependent. The two components of a case (b) 2Λ state are much easier to recognize
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J(J+1)

∆

Σ

Φ

J
J×

E

Figure 2. Plot of reduced term values versus J(J+1) for the e levels of the v+ = 0 10.94 2∆, 10.88
2Σ+, and 10.86 2Φ states, illustrating core-penetrating–core-non-penetrating perturbations. This
‘J plot’ contains the same e-parity data as shown on figure 1. Although the larger splitting
between spin components makes it more difficult to recognize the two halves of the 2∆ and
2Φ states, the plot versus J(J + 1) makes it easier to see which pairs of term curves perturb
each other. Note that the e-symmetry part of the 2Σ+ state appears here as a single term curve
perturbed once (weakly) from above. The term curve just below the 10.88 2Σ+ state is the upper
(F2) spin component of the 10.86 2Φ state.

on an N plot (figure 1) than a J plot (figure 2), but effects (level shifts, extra lines)
of local perturbations that always occur at ∆J = 0 intersections of rotational term
curves, are much easier to understand on a J plot. As will be seen later, core-non-
penetrating states follow case (d) and the 2`+ 1 components of an ` complex are so
widely separated on an N plot that they appear as separate states.

The appearance of the reduced term value plots, as we follow the three Rydberg
series, is very similar. Corresponding perturbations appear at high N for low-n∗
states and move systematically towards lower N as n∗ increases (figures 3 and 4).
This systematic shift of all penetrating–non-penetrating perturbations to lower N
as n∗ increases, reflects the n∗−3 scaling of the energy difference between the core-
penetrating (non-integer n∗) and the hydrogenic (integer n∗) non-penetrating state.
The ∆J = 0, ∆N = 0 energy separations between different core-penetrating elec-
tronic states is much larger than the Bl±N∓ interaction matrix elements (Hund’s
case (a) or (b)) (Lefebvre-Brion & Field 1986), thus the `-uncoupling interactions
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Φ

Φ

Φ

N N

E
N

N
×

Figure 3. Systematic shifts of replicated perturbations in the v+ = 0 0.86 2Φ series as n∗ increases
(Φ+ open circles, Φ− filled circles.) The bottom panel shows the same state as shown in figure 1.
The key points to notice are that, as n∗ increases, the lowest-N perturbation shifts systematically
to lower N , and, just above the lowest-N perturber there are many other downward moving,
closely spaced perturbers. It becomes very difficult to disentangle the successive perturbers.

among those states can be neglected. The effective rotational constants of penetrating
states do not change significantly with n∗ in the 6 6 n∗ 6 14 region. In contrast, the
core-non-penetrating states are described well by Hund’s case (d) (Lefebvre-Brion
& Field 1986). For these states the `-uncoupling B+l±N∓ rotational interaction is
large relative to the electronic separations between rotationless Λ states. The ef-
fective rotational constants for the low energy components of the non-penetrating
complexes are very small (relative to B+) and do not change (significantly) with n∗.
In effect, for increasing consecutive-n∗ members of a core-penetrating Rydberg se-
ries, the crossings between core-penetrating and core-non-penetrating terms occur at
lower and lower J . Eventually, as n∗ increases, multiple level crossings appear simul-
taneously even at very low J . In addition, the `-uncoupling interactions among the
core-penetrating states become important at progressively lower J values and the low
J effective B values of the core-penetrating states become strongly n∗ dependent.
Eventually, at n∗ ≈ 14, this picture of isolated perturbations moving systemati-
cally to lower J values breaks down. The window for detecting and exploiting these
isolated repeated systematically J-scaling core-penetrating–non-penetrating pertur-
bations extends from 6 . n∗ . 14 for BaF.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Rydberg series of BaF 1515

N N

Σ

Σ

Σ

∆

∆

∆

∆

∆

∆

N
N ×

E

Figure 4. Systematic shifts of replicated perturbations in the v+ = 1 0.942∆ and v+ = 1 0.88 2Σ+

series as n∗ increases. (+(−)Kronig symmetry open (filled) circles.) Two kinds of perturbations
appear. The 0.88 2Σ+ state crosses through 0.94 2∆+ from below. This perturbation between
core-penetrating states also shifts systematically to lower N as n∗ increases. Non-penetrating
states cross through 2∆ from above, intersecting 2∆+ at higher N than 2∆−. The arrows mark
the location of the lowest-N crossing in the 2∆− state.

(c ) Perturbations in the 0.86 2Φ series
The repeated perturbations in the 0.86 2Φ series hold the key to the ` assignments

of the core-non-penetrating states. A priori , all one knows is that (n + 1)( 1
2n)–10

non-penetrating 2Λ states of BaF live near integer n∗ (i.e. at n = 10 there are 45
different non-penetrating 2Λ states, belonging to 4 6 ` 6 9). Some sort of simplified
model is needed to predict the following.

(i) Which of the non-penetrating states will cross through (from above) a pene-
trating state situated 1.00− 0.86 = 0.14 below integer n∗?

(ii) As J increases, what is the order in which the `,Λ (case b) or `,L (case d)
non-penetrating states cross through the 0.86 penetrating state?

(iii) What is the slope of the reduced rotational term value curve for each `,L
non-penetrating state at the J value of its (∆J = ∆N = 0) intersection with the
0.86 penetrating state?

(iv) What is the perturbation matrix element at this level crossing? Is the matrix
element large enough to guarantee detection or small enough to be undetectable (at
the resolution, precision, and dynamic range of the specific experiment)? In between
the limits of guaranteed detection or non-detection, there is the possibility of detection
if a near perfect coincidence of interacting zero-order energy levels occurs, and the
multiple possibilities of such a coincidence occurring at one of several successive n∗
values.

The first step is to calculate the nonrotating n∗ values of all `,Λ-non-penetrating
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Table 2.

2Σ+ 2Π 2∆ 2Φ 2Γ 2H CG

11g 11.0934 11.0738 11.0256 10.9589 10.8807 — 10.9968
11h 11.0487 11.0432 11.0273 11.0021 10.9690 10.9296 10.9992
∆n 0.0447 0.0306 −0.0017 −0.0432 −0.0883 —

states. Using a multipole-core model (prolate spheroidal coordinates) and multipole
moments computed from the naive +2,−1 point charge distribution we get table 2.

The spread in n∗ values is slightly larger than that which would be expected
for a realistic model in which Ba2+ and F− atomic-ion polarization effects reduce
the molecular-ion-core multipole moments. It is clear that all the non-rotating non-
penetrating `,Λ states are higher lying than the 0.86 2Φ state. The range of n∗ values
spanned by the Λ components of each ` complex decreases rapidly with ` (therefore
the splittings of the ` = 6, 7, 8, 9 complexes are not shown). Similarly, the offset
from integer n∗ of the centre of gravity (CG) of each ` complex decreases rapidly
with `. Finally, since ` mixing, induced by the core multipole moments, follows a
∆Λ = 0 selection rule, the most severe ` mixing (at low N+) is expected for the
middle components of each ` complex because these components have the smallest
∆Λ = 0 energy separations (shown as ∆n in table 2).

It appears that, as N increases, the 0.86 2Φ state will eventually cross and thus
be perturbed by all of the components of all non-penetrating ` complexes for which
the Beff value is smaller than B+. In order to expose the diagnostic features of each
`,Λ or `,L substate, that will become its perturbation signature when imposed via
perturbation on the 0.86 2Φ state, it is necessary to examine the rotational behaviour
of a case (d) complex (Lefebvre-Brion & Field 1986). In the case (d) limit, the pattern-
forming rotational quantum number is N+ and, for all 2` + 1 components of an `
complex,

T (d)(N+) = B+N+(N+ + 1). (3.1)
Each N+ level has 2`+ 1 N components (or 2N + 1 when N < `), where

N ≡N+ + l, (3.2)

N −N+ ≡ L and L = −`,−`+ 1, . . . ,+`. (3.3)
L is the projection of l along the direction of N . Since the core-penetrating states
follow the case (b) pattern, where N rather than N+ is the pattern-forming rotational
quantum number,

T (b)(N) = B+N(N + 1), (3.4)
it will be useful to re-express T (d) in terms of N and L rather than N+

T (d)(N,L) = B+(N − L)(N − L+ 1) (3.5)
= B+N(N + 1) +B+L(L − 1)− 2B+LN. (3.6)

Thus, if the reduced rotational term value,

T (d)(N,L)−B+N(N + 1), (3.7)

is plotted versus N , a straight line will be obtained with slope −2B+L (and intercept
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ECG +B+L(L− 1)). Since B+ is usually known from the previous analysis of many
isolated core-penetrating series, the slope of this reduced term value plot determines
L for an unknown perturber, provided that at least two consecutive rotational term
values of this non-penetrating perturber can be observed. Note that the slopes and
intercepts do not depend on `. Thus the case (d) term curves for all non-penetrating
` occur as parallel groups within each common L value, and the energy order of `
components at each N , within each L group, is determined by the predicted energy
order of the non-rotating centres of gravity of the ` complexes. This means that, as a
penetrating state is followed from N = Λ toward higher N , the perturbations by non-
penetrating states will occur in L groups, the highest L first (last) if the penetrating
state lies below (above) integer n∗. Within each L group, the perturbations will occur
in order of increasing `. There is also a Kronig symmetry† selection rule, provided
that spin–orbit perturbations can be neglected. A core-penetrating level of + Kronig
symmetry can only be perturbed by a non-penetrating state of + Kronig symmetry
[(−1)`+L].

The last piece of the assignment puzzle, ‘what is the highest `-value detectable
through perturbations?’, is provided by the expectation that the perturbation matrix
elements decrease rapidly as ` increases (Jungen & Miescher 1969; Eyler & Pipkin
1986; Watson 1994). This means that the highest detectable ` value is determined by
the maximum |L| value among all non-penetrating perturbers observed for a given
penetrating state. The 0.86 2Φ state is ideally situated to provide this upper bound
on perturbation-detectable ` values because it is a nearly pure f (` = 3) state.

The 0.86 2Φ state is also located not so close to integer n∗ that the non-penetrating
` complexes are able to undergo nearly complete ` uncoupling (transition to case (d))
before the lowest-N perturbation is reached. This confers two benefits:

(i) L-diagnostic slopes are observable on reduced term value plots;
(ii) less restrictive case (b)–(d) than case (b)–(b) selection rules make it possible

(in principle) to observe all L values via perturbations of a single Λ state.
Figures 1 and 2 are reduced term value plots for the 10.86 2Φ, 10.88 2Σ+, and

10.94 2∆ states. The 10.86 2Φ state is the key to the `,L assignments of the core-
non-penetrating states that emanate from n∗ = 11. The first (lowest-N) level crossing
in the 10.86 2Φ+ (‘+’ means + Kronig symmetry) state appears to occur near N = 17
[N(N + 1) = 306]. The lowest-N perturbation will involve a state with the highest
observable L value and this in turn will suggest the highest ` value detectable via
perturbations of any of the ten well-known core penetrating 2Λ Rydberg series. A
careful investigation of the reduced term value plot reveals no other systematic level
shifts (larger than our approximately 0.01 cm−1 detection threshold) that would
suggest an additional, lower-N perturbation. (This is not a blind search. One knows
where to look and what to look for. If one were to perform a limited number of higher

† Kronig symmetry is defined by the reflection symmetry of the spatial part of the electronic wave-
function and is related to total ± parity by a factor of (−1)N = (−1)N

++L. What we have described
here as ‘Kronig symmetry’ is identical to the Λ(A′)/Λ(A′′) symmetry discussed by Alexander et al.
(1988). Although for a non-singlet state, the spatial part of the electronic wavefunction has well-defined
symmetry with respect to reflection through a plane perpendicular to the nuclear rotation (R̄ or N̄+)
only in the Hund’s case (b) or (d) limit, Alexander et al. (1988) show how Λ(A′)/Λ(A′′) symmetry may
always be rigorously defined. Since we are concerned here primarily with perturbation selection rules for
the B[N − l]2 operator (Lefebvre-Brion & Field 1986), the 2S+1Λ 6= 0 states that are connected to a
2S+1Σ+ state by multiple applications of the BN+l− operator have + Kronig symmetry, are symmetric
with respect to reflection of the spatial coordinates of the electronic wavefunction through the plane of
rotation, and are of Λ(A′) or Λ+ symmetry.
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resolution higher sensitivity experiments, in search of higher-L (or higher-`) states,
the N < 17 region of the BaF 10.86 2Φ v = 0 state would be optimal.) From the
extra lines and level shifts observed at N = 17 and 18, we obtain

Tpert(18)− Tpert(17) = 6.03 cm−1 (3.8 a)
= 2B+[18− L], (3.8 b)

and given that B+ ≈ 0.234 cm−1, we obtain

L ≈ 5.1.

This suggests that the core-non-penetrating perturber is the L = 5 component of the
` = 5 (h) complex. The Kronig symmetry of ` = 5, L = 5 is +, which is consistent
with the selection rule for perturbations of a Φ+ state. L=5 is too high (and the
Kronig symmetry is wrong) for ` = 4 (g). The only other plausible `–assignments
are ` = 7 (k) and 9 (m), but these would imply the presence of detectable lower–
N L > 5 perturbations.

The 10.86 2Φ− state is weakly perturbed twice, at N = 17 and also probably at
N = 16. From the extra lines we calculate Lexp = 4.3, thus the likely perturber is
` = 5,L = 4, a −Kronig symmetry state. The presence of a second perturbation
at N = 16 [N(N + 1) = 272] is inferred from only one extra line and a very small
level shift. That perturbation cannot be corroborated by perturbations in higher-n
members of the 0.86 2Φ series. Insufficient information is available to determine an L
value, but a plausible assignment for the second non-penetrating perturber is ` = 6,
L = 5, − Kronig symmetry.

The 11.86 2Φ state exhibits two strong perturbations in the 2Φ+ component and
one strong perturbation (and possibly a second one) in the 2Φ− component (see
figure 3, middle panel). As expected, these perturbations are shifted to lower N
values relative to the corresponding perturbations in the 10.86 2Φ state. Specifically,
the perturbation at N = 17 in 10.86 2Φ+ moves to N = 14 in 11.86 2Φ+ and to
N ≈ 12 in 12.86 2Φ+; similarly, the strong perturbation at N = 18 in 11.86 2Φ+

moves to N = 14 in 12.86 2Φ−. In addition, the 12.86 2Φ state shows two weak
perturbations, at N = 11 in 2Φ− and N ≈ 13–14 in 2Φ+.

(d ) Perturbations in the 0.88 2Σ+ series
Figure 5 shows that the 10.88 2Σ+ state is perturbed from above at N = 14

[N(N + 1) = 210]. The main perturbation of the 10.88 2Σ+ state is quite weak,
the maximum observed shift of the main lines is only approximately 0.06 cm−1.
Figures 1, 2 and 5 show that the curvature of the perturber term curve is anomalous.
The slope of this term curve becomes increasingly negative as N increases, which is
the opposite of what one would expect for an isolated non-penetrating state. One
explanation is that the 10.88 2Σ+ state is perturbed by two non-penetrating states
which in turn undergo an avoided crossing near the perturbation region. Thus, if we
calculate Lexp separately from the N = 13–14 and N = 14–15 intervals at energies,
respectively, above and below the 10.88 2Σ+ state (see figure 5), we obtain Lexp = 1.8
and Lexp = 4.3. These L values suggest assignment of the non-penetrating perturbers
as ` = 5, L = 3, + and ` = 4, L = 4, + for the N = 13–14 and N = 14–15 intervals,
respectively. Since the 2Σ+ state is of + Kronig symmetry, the L = 3 component of
the g(` = 4) complex and L = 4 component of the h(` = 5) complex are excluded as
perturbers. Although both Lexp values are distressingly far from integer values, the
fact that one is smaller and the other larger than integer supports our suggestion
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N N

N
N ×

E

Figure 5. The very weak perturbation between the 10.88 2Σ+ state and an unknown
core-non-penetrating state. (Open circles used for e-symmetry levels, solid circles for f -symmetry
levels. Both e- and f -symmetry components of a 2Σ+ state belong to + Kronig symmetry.) The
perturbation affects both the e and f components equally and at the same N value. This shows
that the core-non-penetrating states have negligible spin doubling (i.e. each `, L, N substate
consists of two near degenerate J = N ± 1

2 spin components which belong to the same total par-
ity, same Kronig symmetry, but opposite e/f symmetry). The numerous small doublings are not
perturbations, they reflect small differences in term values calculated from observed rotational
transitions terminating on the same final state.

that the two non-penetrating components undergo an avoided crossing right at the
intersection with the 2Σ+ state. A similar double perturbation is observed in the
11.86 2Σ+ state, shifted as expected to lower N values.

(e ) Perturbations in the 0.94 2∆ series
Both + and − Kronig symmetry components of the 10.94 2∆ state are perturbed

at N ≈ 11–12 (see figures 1 and 2). The two perturbers fall almost exactly on top
of each other at low N , despite the fact that they have opposite Kronig symmetry
hence must belong to different ` values. From the observed (not deperturbed) extra
lines

∆T (8.5) = Tpert(9)− Tpert(8) = 2.96 cm−1 (3.9 a)
= 2B+[9− L], (3.9 b)

and B+ ≈ 0.234 cm−1, we obtain,

Lexp ≈ 2.7,

which suggests that ∆+ is perturbed by h,L = 3 and ∆− by g,L = 3. These
perturbations are quite strong and the ∆T (N + 1

2) values vary strongly with N .
The behaviour of the 10.94 2∆− state is regular outside of the perturbation region,
therefore a simple two level deperturbation is possible. The observed deperturbed
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Figure 6. Weak extra lines near the v+ = 1 6.94 2∆ state, assigned to an unknown core-
non-penetrating perturber. These transitions originate from J = 6.5f (N = 7) of C 2Π3/2.
The arrows mark the position of the core-non-penetrating perturbing state. The extra line near
the P(7) (PQ12ef + P22ff ) main line actually perturbs the O(7) (OP12ff ) main line, because of
the ∆J = 0 perturbation selection rule (see figure 7).

value, Lexp ≈ 3.3, supports the above L = 3 assignment. Lexp appears to increase
slightly with N . Our very crude analysis likely breaks down for such low N values
(before the non-penetrating complexes have reached the case (d) limit) and for a
core-penetrating state (n∗ = n+ 0.94) predicted to lie within rather than just below
the n∗ range of the g (n∗ = n+1.09 to 0.88) and h (n∗ = n+1.05 to 0.93) complexes.

The v = 1 6.94 2∆ state contains some information that may be relevant to the
identity of the main (core-non-penetrating) perturber of the 10.88 2Σ+ state (because
the perturber of v = 1 6.94 2∆ discussed here may be identical to the perturber of
v = 0 10.88 2Σ+). Figures 6 and 7 show a very weak perturbation, near J = 5.5f in
the v = 1 6.94 2∆ state. The perturber has an anomalously small Beff ≈ 0.20 cm−1,
and is therefore a component of a non-penetrating complex. The perturbers, both e-
and f -symmetry levels, are observed for all J between 5.5 and 10.5, but only the main
J = 5.5f level is detectably shifted, by only 0.028 cm−1. However, the Lexp ≈ 1.25
value derived from this assignment appears to be too small. This perturber of v = 1
6.94 2∆ probably also affects other members of the v = 0 and 1 manifolds of the 0.94
2∆ series at J values below J = 5.5f and J = 6.5e, which are the low-J limits of
our OODR Rydberg spectra. (Note that the low-J limits mentioned in §3 a apply to
the intermediate C 2Π state. These limits are the Rydberg levels that can be reached
from J = 6.5f of C 2Π3/2.) Thus, except for v = 1 of 6.94 2∆, we do not observe these
perturbations. The v = 1 6.94 2∆ state is unique because it is strongly perturbed by
the v = 0 7.94 2∆ state (intra-channel perturbation, see Murphy et al. (1995) and
Herzberg & Jungen (1972)). As a result v = 1 6.94 2∆ is pushed to lower energy and
the perturbation by the core-non-penetrating state is shifted to higher J values, well
within the range observable in our OODR spectra.
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N

J
N

v ∆
N

N
E

×

Figure 7. Plot of reduced term value versus N for the v+ = 1 6.94 2∆ state and its unknown
core-non-penetrating perturber. The term curves show curvature characteristic of a weak per-
turbation which culminates at a J value just below the lowest accessible (J = 5.5f or 6.5e) in
our experiments via the C2Π3/2 intermediate state. Once again, an N plot makes it difficult to
see the pattern of a ∆J = 0, ∆N = 1 perturbation.

N N

v

v

N
N

×
E

Φ

Φ

Figure 8. Plot of reduced term values versus N(N + 1) for v+ = 1 members of the autoionizing
0.86 2Φ series (open (filled) circles are +(−) Kronig symmetry states). The 2Φ state is crossed
from above by several non-penetrating states which shift toward lower N as n∗ increases. Cor-
responding perturbations in the 2Φ− component are indicated by arrows. The weaker lower-N
perturbation in the 2Φ+ component is probably due to an ` = 6 (i), L = 6 perturber.
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(f ) Perturbations in the v+ = 1 0.86 2Φ series
Figure 8 shows perturbations in the autoionizing v+ = 1, 14.86 and 15.86 2Φ

states, obtained from spectra recorded with Dr Ma Hui at Tsinghua University (Ma
et al., unpublished work). These spectra also illustrate the expected shift of per-
turbations by non-penetrating states to lower N as n∗ increases. In fact, the single
weak perturbation in the − Kronig symmetry states (solid circles) is the same ` = 5,
L = 4 (deperturbed Lexp = 4.0 and 3.9 for the v+ = 14.86 2Φ− and v+ = 15.86 2Φ−
states, respectively) perturbation illustrated in the v+ = 0 2Φ states shown in fig-
ures 1–3. The 2Φ+ state (open circles) is perturbed by two core-non-penetrating
states. The weaker perturbation (deperturbed Lexp = 5.0) is due to the ` = 5,
L = 5 perturbation illustrated in figures 1–3. This perturbation is also observed in
the v+ = 13.86 2Φ+ state and fragmentarily (one extra line and several small level
shifts) in the v+ = 15.86 2Φ state (marked by ∗ in figure 8). The strong perturbation
in both v+ = 14.86 2Φ+ and v+ = 15.86 2Φ+ is due to a state with lower L value.
The onset of this perturbation is observed at high N in v+ = 10.86 2Φ+, 11.86 2Φ+,
and 12.86 2Φ+ (see figures 1 and 3).

(g ) n∗-scaling rules
The core-penetrating and non-penetrating Rydberg states within each integer

region of n∗ form a pattern which exhibits characteristic n∗-scaling behaviours
(Herzberg & Jungen 1972). For example, all rotationless energy spacings scale as
n∗−3,

En∗+δ/2 − En∗−δ/2 =
2Rδ
n∗3

[
1 +

δ2

2n∗2

]
. (3.10)

Rotational effects are included by noting that, in both case (b) and (d) limits, the
effective rotational constant is the rotational constant of the ion core, B+. However,
in the case (d) limit, all of the core-non-penetrating states are arranged into same-(N ,
L) clusters,

T (d)(N,L)−B+N(N + 1) = B+[L(L − 1)− 2LN ]. (3.11)
The energy spacings of the zero-order substates within each N,L cluster, which
belong to different ` values, are independent of N and scale as

En∗,`+1,N,L − En∗,`,N,L = −2R[µ̄`+1 − µ̄`]/n∗3, (3.12)

where µ̄` is the centre of gravity of the rotationless quantum defects for the Λ com-
ponents of the ` complex. Equation (3.12) neglects off-diagonal ∆N = 0, ∆L 6= 0
core–multipole interactions between members of different L clusters. This neglect is
reasonable because the energy differences scale as

EN,L − EN,L−1 = B+[2(L − 1)− 2N ], (3.13)

and the off-diagonal matrix elements vary more slowly than linearly in N . Since all
off-diagonal core-multipole matrix elements between members of different Rydberg
series scale (Herzberg & Jungen 1972) as

〈n∗i |H ′|n∗j 〉 ∝ (n∗in
∗
j )
−3/2, (3.14 a)

or, for n∗i ≈ n∗j ≡ n∗,
〈n∗i |H ′|n∗j 〉 ∝ n∗−3. (3.14 b)
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The ` mixing among the different ` components in each N,L cluster,

θij ≡
H ′ij

∆E◦ij
, (3.15)

is n∗ independent (and N independent), where θ is the mixing angle defined by
ordinary non-degenerate perturbation theory! Of course, interactions that have so
far been neglected will accidentally (at modest n∗) and systematically (at very high
n∗) disrupt this n∗, N independence of the `, `′ mixing coefficients among the non-
penetrating Rydberg states. Foremost among the pattern destroying effects at mod-
est n∗ are the penetrating–non-penetrating perturbations. These perturbations also
exhibit a characteristic n∗, N scaling. As long as the penetrating states follow case
(b) (not too large N) and the non-penetrating states follow case (d) (not too small
N), the N values of the ∆N = 0 intersections between the rotational term curves
move systematically to lower N as n∗ increases. For the ith core-penetrating state
near n with rotationless energy En−µi ,

T
(b)
i,n (N) = En−µi +B+N(N + 1), (3.16)

and for the non-penetrating ` complex near n with rotationless energy En−µ̄` ,

T
(b)
i,n (N)− T (d)

n,`,L(N) = 0 = [En−µi − En−µ̄` ]−B+[L(L − 1)− 2LN ], (3.17)

En−µi − En−µ̄` = −2Rµi − µ̄`
n3 , (3.18)

Ncross =
R
B+n

−3µi − µ̄`
L + 1

2(L − 1). (3.19)

Note that, when (µi − µ̄`) > 0 (the penetrating state lies below the non-penetrating
complex), all of the non-penetrating perturbers have L > 0 and Ncross moves sys-
tematically to lower N value as n∗ increases until Ncross reaches its asymptotic value

Ncross,asy = 1
2(L − 1). (3.20)

However, for (µi − µ̄`) < 0, the non-penetrating perturbers have L < 0 and Ncross
also moves systematically to lower N values as n∗ increases, however, above a critical
n∗ value the perturbations will vanish because they would occur at negative values
of N .

This scaling of penetrating–non-penetrating perturbations toward low N as n∗
increases also implies that ∆n 6= 0 perturbations of a penetrating state by non-
penetrating components of other n complexes will pile up at low N (see 12.86 2Φ in
figure 3). For example, consider the perturbation of the i, n-penetrating state by the
n+ 1, `, L non-penetrating state. The crossing N value is

N∆n=+1
cross =

R
B+n

−3 1 + µi − µ̄`
L + 1

2(L − 1). (3.21)

For example, if B+ = 0.234, µi and µ̄i are both negligible with respect to one, and
L = 5, then

N∆n=+1
cross = 9.4× 104n−3 + 2,

and, by n = 20, the next n L = 5 crossing has shifted down to N = 14! This implies
that the window for observing ‘isolated’ penetrating–non-penetrating perturbations
closes for BaF well before n = 20. For a lighter molecule (e.g. one with B+ = 1 cm−1),
these inter-n perturbations begin to pile up at slightly lower n (N∆n=+1

cross = 14, for
L = 5, occurs at n = 12).
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(h ) Non-penetrating states detected above integer n∗

The core-penetrating states located just above integer n∗ should be well situated
to serve as perturbation detectors for components of core-non-penetrating complexes
which have negative L values. Unfortunately, the situation is more complex just above
integer n∗. There are several reasons for this, as follows. (i) The two core-penetrating
states just above integer n∗, 0.04 2Π and 0.08 2Σ+, lie too close to integer n∗, and
probably lie between the highest few components of the g and h complexes. As
a result, the easiest to assign L = −` fastest upward going component of each `
complex either does not cross the 0.04 2Π and 0.08 2Σ+ states or is sampled at too
low N to have reached the characteristic case (d) behaviour (diagnostic slope on a
reduced term value versus N plot). (ii) The core-penetrating states have effective B
values which are larger than B+ and are weakly n∗ dependent. The reason for the
larger slopes is that the off-diagonal ` uncoupling matrix elements for low-Λ states,
∼ [`(`+1)−Λ(Λ±1)]1/2, are larger than for high-Λ states. Thus the n∗, N scaling of
the penetrating–non-penetrating level crossings is more complicated than the simple
zero-order pattern described in §3 f . (iii) The effective B values for the ‘bright’ 0.04
2Π and 0.08 2Σ+ states may be so similar to those for the ‘dark’ L = 0 or L = 1 non-
penetrating components that the multipolar interaction is large enough to ‘light up’
an entire non-penetrating term curve (and distort its otherwise diagnostic rotational
term curve). (iv) We do not have very complete spectroscopic information about the
0.04 2Π and 0.08 2Σ+ states in the optimum n∗ = 6–14 region.

4. Conclusion

Several core-penetrating–non-penetrating perturbations are observed in the
OODR spectra of BaF. One component is definitively assigned as the ` = 5 (h),
L = 5 component. Examples of non-penetrating states with Lexp = 1–5 have been
observed. Core-penetrating series situated just above and below integer n∗ are ideal
detectors of non-penetrating states via perturbations. Of these, the easiest to detect
and assign are those with highest |L| value, which correspond to the most rapidly
downward (L > 0) or upward (L < 0) going components on a reduced term value
plot. Assignments of other smaller-|L| perturbers are less reliable and will require
further analysis.

The naively expected n∗, N scaling of the level patterns is discussed. Each
penetrating–non-penetrating perturbation is expected to be replicated, shifted to
lower N -value, as one goes from the n∗ complex to the n∗+ 1 complex. This pattern
of replicated perturbations has been observed (figures 3 and 4), but will be more
fully documented in a subsequent publication.

Before attempting a global multi-state fit to all of the recorded BaF spectral data,
from which BaF+ multipole moments and polarizabilities would be obtained, it is
necessary to refine the single state assignments (Jakubek & Field 1996) and deter-
mine sets of state–by–state molecular constants by local deperturbations (Jakubek
& Field 1998). Above all, it is essential to know how the ten well known and spec-
troscopically ‘bright’ s∼p∼d∼f core-penetrating 2Λ states (Jakubek & Field 1994)
sample the underlying zero-order pattern of core-non-penetrating states via pertur-
bations: which ` are detectable; what is the case (d) rotational pattern (clusters
of same-N,L states; L-diagnostic slopes on reduced term value versus N plots; n∗-
independent ` mixing within N,L clusters); and what causes the naive zero-order
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patterns to break down? The present paper is the first small step toward a global
model for the non-penetrating Rydberg states of BaF.
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We thank Dr Christian Jungen for helpful suggestions and Dr Ma Hui for his hospitality at
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